transformChooser method
Implementation
Widget transformChooser() {
return Align(
alignment: Alignment.centerLeft,
child: Wrap(
spacing: 5.0,
runSpacing: choiceChipRowSpace,
children: [
// Layout the first group of chips (up to MODE) so we can introduce a
// gap before CONSTANT and so tie the CONSTANT chip to the CONSTANT
// field for improved UX.
ChoiceChipTip<String>(
options: methods.sublist(0, 3),
selectedOption: selectedTransform,
onSelected: (transform) {
setState(() {
selectedTransform = transform ?? '';
if (selectedTransform == 'Constant') {
_setConstantDefault();
}
});
},
getLabel: (transform) => transform,
tooltips: const {
'Mean': '''
Use the mean (average) value of the numeric values of the variable
as the value imputed for any missing values. Using the mean is
often useful in maintaining the distribution of values for the
variable.
''',
'Median': '''
Use the median (central) value of the numeric values of the
variable as the value imputed for any missing values. Using the
median is motivaed as the central value that is less affected by
outliers in a skewed distribution.
''',
'Mode': '''
Use the mode (most common) value of the variable values as the
value imputed for any missing values. Using the mode makes sense
when the most common value is the logical choice for missing
values.
''',
},
enabled: true,
),
// Add extra space between MODE and CONSTANT.
configChooserGap,
// Second group of chips (only CONSTANT for now).
ChoiceChipTip<String>(
options: methods.sublist(3),
selectedOption: selectedTransform,
onSelected: (transform) {
setState(() {
selectedTransform = transform ?? '';
if (selectedTransform == 'Constant') {
_setConstantDefault();
}
});
},
getLabel: (transform) => transform,
tooltips: const {
'Constant': '''
Choose a constant value for the imputation. Specify the value in
the adjacent Constant field. Typically use 0 for numeric data, if
appropriate, or 'Missing' for categoric data.
''',
},
enabled: true,
),
],
),
);
}