rSource function
- BuildContext context,
- WidgetRef ref,
- List<
String> scripts
Run the R script and append to the rattle
script.
Various PARAMETERS that are found in the R script will be replaced with
actual values before the code is run. An early approach was to wrap the
PARAMETERS within angle brackets, as in <PARAMETERS
> but then the R
scripts do not run standalone. Whlist it did ensure the parameters were
properly mapped, it is useful to be able to run the scripts as is outside of
rattleNG. So decided to remove the angle brackets. The scripts still can not
tun standalone as such since they will have undefined vairables, but we can
define the variables and then run the scripts.
Implementation
Future<void> rSource(
BuildContext context,
WidgetRef ref,
List<String> scripts,
) async {
// Initialise the state variables obtained from the different providers.
int randomSeedSetting = ref.read(randomSeedSettingProvider);
bool randomPartitionSetting = ref.read(randomPartitionSettingProvider);
bool checkbox = ref.read(checkboxProvider);
bool cleanse = ref.read(cleanseProvider);
bool normalise = ref.read(normaliseProvider);
bool partition = ref.read(partitionProvider);
bool punctuation = ref.read(punctuationProvider);
bool stem = ref.read(stemProvider);
bool stopword = ref.read(stopwordProvider);
String groupBy = ref.read(groupByProvider);
String imputed = ref.read(imputedProvider);
String language = ref.read(languageProvider);
String maxWord = ref.read(maxWordProvider);
String minFreq = ref.read(minFreqProvider).toString();
String path = ref.read(pathProvider);
String selected = ref.read(selectedProvider);
String selected2 = ref.read(selected2Provider);
int minSplit = ref.read(minSplitProvider);
int maxDepth = ref.read(maxDepthProvider);
int nnetMaxNWts = ref.read(maxNWtsProvider);
String priors = ref.read(priorsProvider);
bool includingMissing = ref.read(treeIncludeMissingProvider);
bool nnetTrace = ref.read(traceNeuralProvider);
bool nnetSkip = ref.read(skipNeuralProvider);
bool neuralIgnoreCategoric = ref.read(ignoreCategoricNeuralProvider);
int minBucket = ref.read(minBucketProvider);
double complexity = ref.read(complexityProvider);
String lossMatrix = ref.read(lossMatrixProvider);
List<double> partitionRatios = ref.read(partitionSettingProvider);
String partitionString =
'${partitionRatios.first}, ${partitionRatios[1]}, ${partitionRatios.last}';
// ASSOCIATION
bool associationBaskets = ref.read(basketsAssociationProvider);
double associationSupport = ref.read(supportAssociationProvider);
double associationConfidence = ref.read(confidenceAssociationProvider);
int associationMinLength = ref.read(minLengthAssociationProvider);
int associationInterestMeasureLimit =
ref.read(interestMeasuresAssociationProvider);
String associationRulesSortBy =
ref.read(sortByAssociationProvider).toLowerCase();
// BOOST
int boostMaxDepth = ref.read(maxDepthBoostProvider);
int boostMinSplit = ref.read(minSplitBoostProvider);
int boostXVal = ref.read(xValueBoostProvider);
int boostThreads = ref.read(threadsBoostProvider);
int boostIterations = ref.read(iterationsBoostProvider);
double boostLearningRate = ref.read(learningRateBoostProvider);
double boostComplexity = ref.read(complexityBoostProvider);
String boostObjective = ref.read(objectiveBoostProvider);
// CLUSTER
int clusterNum = ref.read(numberClusterProvider);
int clusterRun = ref.read(runClusterProvider);
int clusterProcessor = ref.read(processorClusterProvider);
bool clusterReScale = ref.read(reScaleClusterProvider);
String clusterDistance = ref.read(distanceClusterProvider);
String clusterLink = ref.read(linkClusterProvider);
String clusterType = ref.read(typeClusterProvider);
// EVALUATE
String chosenDataType = ref.read(datasetTypeProvider);
// FOREST
int forestTrees = ref.read(treeNumForestProvider);
int forestPredictorNum = ref.read(predictorNumForestProvider);
int forestNo = ref.read(treeNoForestProvider);
bool forestImpute = ref.read(imputeForestProvider);
// LINEAR
String linearFamily = ref.read(familyLinearProvider).toLowerCase();
// NEURAL
double neuralThreshold = ref.read(thresholdNeuralProvider);
int hiddenLayerSizes = ref.read(hiddenLayerNeuralProvider);
int neuralStepMax = ref.read(stepMaxNeuralProvider);
int nnetMaxit = ref.read(maxitNeuralProvider);
String hiddenNeurons = ref.read(hiddenLayersNeuralProvider);
String neuralActivationFct = ref.read(activationFctNeuralProvider);
String neuralErrorFct = ref.read(errorFctNeuralProvider);
// SETTINGS
bool useValidation = ref.read(useValidationSettingProvider);
String theme = ref.read(settingsGraphicThemeProvider);
// SVM
RegExp regex = RegExp(r'\(([^)]+)\)');
String svmKernelItem = ref.read(kernelSVMProvider);
final match = regex.firstMatch(svmKernelItem);
String svmKernel = match != null ? match.group(1)! : '';
int svmDegree = ref.read(degreeSVMProvider);
// VISUAL
bool ignoreMissingGroupBy = ref.read(ignoreMissingGroupByProvider);
bool exploreVisualBoxplotNotch = ref.read(exploreVisualBoxplotNotchProvider);
int interval = ref.read(intervalProvider);
// First obtain the text from each script and combine.
String code = '';
String newCode = '';
for (String script in scripts) {
debugText('R SOURCE', '$script.R');
String asset = 'assets/r/$script.R';
newCode = await DefaultAssetBundle.of(context).loadString(asset);
newCode = rStripHeader(newCode);
newCode = rStripTodo(newCode);
newCode = "\n${'#' * 72}\n## -- $script.R --\n${'#' * 72}\n$newCode";
code += newCode;
}
////////////////////////////////////////////////////////////////////////
// GLOBAL
//
// Replace Global template patterns with their values. These are not specific
// to any particular feature,
code = code.replaceAll('<TIMESTAMP>', 'RattleNG ${timestamp()}');
PackageInfo info = await PackageInfo.fromPlatform();
code = code.replaceAll('<VERSION>', info.version);
// 20240825 lutra Fix the path to the dataset to ensure that the Windows path
// has been correctly converted to a Unix path for R.
if (Platform.isWindows) {
path = path.replaceAll(r'\>', '/');
}
code = code.replaceAll('<FILENAME>', path);
code = code.replaceAll('<TEMPDIR>', tempDir);
String package = ref.read(packageProvider);
code = code.replaceAll('<PACKAGE>', package);
String dataset = ref.read(datasetProvider);
code = code.replaceAll('<DATASET>', dataset);
////////////////////////////////////////////////////////////////////////
// SETTINGS
// TODO 20240916 gjw VALUE OF MAXFACTOR NEEDS TO COME FROM SETTINGS.
code = code.replaceAll('<MAXFACTOR>', '20');
code = code.replaceAll(
'<RANDOM_PARTITION>',
randomPartitionSetting.toString().toUpperCase(),
);
code = code.replaceAll('<RANDOM_SEED>', randomSeedSetting.toString());
code = code.replaceAll('<SETTINGS_GRAPHIC_THEME>', theme);
code =
code.replaceAll('<TUNING_TYPE>', useValidation ? 'validation' : 'tuning');
////////////////////////////////////////////////////////////////////////
// BOOST
code = code.replaceAll('<BOOST_MAX_DEPTH>', boostMaxDepth.toString());
code = code.replaceAll('<BOOST_MIN_SPLIT>', boostMinSplit.toString());
code = code.replaceAll('<BOOST_X_VALUE>', boostXVal.toString());
code = code.replaceAll('<BOOST_LEARNING_RATE>', boostLearningRate.toString());
code = code.replaceAll('<BOOST_COMPLEXITY>', boostComplexity.toString());
code = code.replaceAll('<BOOST_THREADS>', boostThreads.toString());
code = code.replaceAll('<BOOST_ITERATIONS>', boostIterations.toString());
code = code.replaceAll('<BOOST_OBJECTIVE>', '"$boostObjective"');
////////////////////////////////////////////////////////////////////////
// LINEAR
code = code.replaceAll('<LINEAR_FAMILY>', '"$linearFamily"');
// TODO 20240809 yyx MOVE COMPUTATION ELSEWHERE IF TOO SLOW.
List<String> ignoredVars = getIgnored(ref);
String ignoredVarsString = toRVector(ignoredVars);
code = code.replaceAll('<IGNORE_VARS>', ignoredVarsString);
List<String> result = getMissing(ref);
code = code.replaceAll('<MISSING_VARS>', toRVector(result));
// NEEDS_INIT is true for Windows as main.R does not get run on startup on
// Windows.
// String needsInit = 'FALSE';
// if (Platform.isWindows) needsInit = 'TRUE';
// code = code.replaceAll('<NEEDS_INIT>', needsInit);
// Do we split the dataset? The option is presented on the DATASET GUI, and if
// set we split the dataset.
// TODO if (script.contains('^dataset_')) {
// Do we split the dataset? The option is presented on the DATASET GUI, and if
// set we split the dataset.
code = code.replaceAll('<SPLIT_DATASET>', partition ? 'TRUE' : 'FALSE');
// Do we want to normalise the dataset? The option is presented on the DATASET
// GUI, and if set we normalise the dataset's variable names.
code = code.replaceAll('<NORMALISE_NAMES>', normalise ? 'TRUE' : 'FALSE');
// Do we want to cleanse the dataset? The option is presented on the DATASET
// GUI, and if it is set we will cleanse the dataset columns.
code = code.replaceAll('<CLEANSE_DATASET>', cleanse ? 'TRUE' : 'FALSE');
// TODO 20231016 gjw THESE SHOULD BE SET IN THE DATASET TAB AND ACCESS THROUGH
// PROVIDERS.
//
// target
// risk
// id
// split
// The rolesProvider listes the roles for the different variables which we
// need to know for parsing the R scripts.
Map<String, Role> roles = ref.read(rolesProvider);
// Extract the target variable from the rolesProvider.
String target = 'NULL';
String ident = 'NULL';
roles.forEach((key, value) {
if (value == Role.target) {
target = key;
} else if (value == Role.ident) {
ident = key;
}
});
// If target is NULL then we need to ensure expressions in the R code like
//
// target <- "TARGET_VAR"
//
// becomes
//
// target <- NULL
//
// rather then being "NULL" which then indicates a variable called NULL. So
// handle that special case and then replace any other TARGET_VAR replacement
// as usual.
if (target == 'NULL' || target.isEmpty || target == '\"\"') {
code = code.replaceAll('<"TARGET_VAR">', target);
}
code = code.replaceAll('<TARGET_VAR>', target);
if (ident == 'NULL') {
code = code.replaceAll('<"IDENT_VAR">', ident);
}
code = code.replaceAll('<IDENT_VAR>', ident);
//code = code.replaceAll('<TARGET_VAR>', ref.read(rolesProvider));
// Extract the risk variable from the rolesProvider and use that for now as
// the variable to visualise.
String risk = 'NULL';
roles.forEach((key, value) {
if (value == Role.risk) {
risk = key;
}
});
code = code.replaceAll('<INTERVAL>', interval.toString());
code = code.replaceAll('<NUMBER>', ref.read(numberProvider).toString());
code = code.replaceAll('<SELECTED_VAR>', selected);
code = code.replaceAll('<SELECTED_2_VAR>', selected2);
code =
code.replaceAll('<GROUP_BY_VAR>', groupBy == 'None' ? 'NULL' : groupBy);
code = code.replaceAll('<IMPUTED_VALUE>', imputed);
// normalise ? "rain_tomorrow" : "RainTomorrow",
// );
code = code.replaceAll('<RISK_VAR>', risk);
// Extract the IDENT variables from the rolesProvider.
String ids = '';
roles.forEach((key, value) {
if (value == Role.ident) {
ids = '$ids${ids.isNotEmpty ? ", " : ""}"$key"';
}
});
code = code.replaceAll('<ID_VARS>', ids);
// Replace DATA_SPLIT_TR_TU_TE with the current values from partitionSettingProvider.
code = code.replaceAll('<DATA_SPLIT_TR_TU_TE>', partitionString);
// TODO if (script == 'model_build_rpart')) {
// TODO 20231016 gjw THESE SHOULD BE SET IN THE MODEL TAB AND ARE THEN
// REPLACED WITHING model_build_rpart.R
code = code.replaceAll(
' <PRIORS>',
priors.isNotEmpty ? ', prior = c($priors)' : '',
);
code = code.replaceAll(
' <LOSS>',
lossMatrix.isNotEmpty ? ', loss = matrix(c($lossMatrix))' : '',
);
code = code.replaceAll(' <MAXDEPTH>', ' maxdepth = ${maxDepth.toString()}');
code = code.replaceAll(' <MINSPLIT>', ' minsplit = ${minSplit.toString()}');
code =
code.replaceAll(' <MINBUCKET>', ' minbucket = ${minBucket.toString()}');
code = code.replaceAll(' <CP>', ' cp = ${complexity.toString()}');
////////////////////////////////////////////////////////////////////////
// ASSOCIATE
code = code.replaceAll(
'<ASSOCIATION_BASKETS>',
associationBaskets ? 'TRUE' : 'FALSE',
);
code = code.replaceAll(
'<ASSOCIATION_SUPPORT>',
associationSupport.toString(),
);
code = code.replaceAll(
'<ASSOCIATION_CONFIDENCE>',
associationConfidence.toString(),
);
code = code.replaceAll(
'<ASSOCIATION_MIN_LENGTH>',
associationMinLength.toString(),
);
code = code.replaceAll(
'<ASSOCIATION_INTEREST_MEASURE>',
associationInterestMeasureLimit.toString(),
);
code = code.replaceAll(
'<ASSOCIATION_RULES_SORT_BY>',
'"$associationRulesSortBy"',
);
////////////////////////////////////////////////////////////////////////
// BOOST
code = code.replaceAll('<BOOST_MAX_DEPTH>', boostMaxDepth.toString());
code = code.replaceAll('<BOOST_MIN_SPLIT>', boostMinSplit.toString());
code = code.replaceAll('<BOOST_X_VALUE>', boostXVal.toString());
code = code.replaceAll('<BOOST_LEARNING_RATE>', boostLearningRate.toString());
code = code.replaceAll('<BOOST_COMPLEXITY>', boostComplexity.toString());
code = code.replaceAll('<BOOST_THREADS>', boostThreads.toString());
code = code.replaceAll('<BOOST_ITERATIONS>', boostIterations.toString());
code = code.replaceAll('<BOOST_OBJECTIVE>', '"$boostObjective"');
////////////////////////////////////////////////////////////////////////
// CLUSTER
code = code.replaceAll('<CLUSTER_NUM>', clusterNum.toString());
code = code.replaceAll('<CLUSTER_RUN>', clusterRun.toString());
code =
code.replaceAll('<CLUSTER_RESCALE>', clusterReScale ? 'TRUE' : 'FALSE');
code = code.replaceAll('<CLUSTER_TYPE>', '"${clusterType.toString()}"');
code =
code.replaceAll('<CLUSTER_DISTANCE>', '"${clusterDistance.toString()}"');
code = code.replaceAll('<CLUSTER_LINK>', '"${clusterLink.toString()}"');
code = code.replaceAll('<CLUSTER_PROCESSOR>', clusterProcessor.toString());
////////////////////////////////////////////////////////////////////////
// EXPLORE - VISUAL - BOXPLOT
code = code.replaceAll(
'<BOXPLOT_NOTCH>',
exploreVisualBoxplotNotch.toString().toUpperCase(),
);
code = code.replaceAll(
'<IGNORE_MISSING_GROUP_BY>',
ignoreMissingGroupBy.toString().toUpperCase(),
);
// EVALUATE
code = code.replaceAll('<DATASET_TYPE>', chosenDataType.toUpperCase());
////////////////////////////////////////////////////////////////////////
// FOREST
code = code.replaceAll('<RF_NUM_TREES>', forestTrees.toString());
code = code.replaceAll('<RF_MTRY>', forestPredictorNum.toString());
code = code.replaceAll('<RF_NO_TREE>', forestNo.toString());
code = code.replaceAll(
'<RF_NA_ACTION>',
forestImpute ? 'randomForest::na.roughfix' : 'na.omit',
);
////////////////////////////////////////////////////////////////////////
// NEURAL
code = code.replaceAll('<NNET_HIDDEN_LAYERS>', hiddenLayerSizes.toString());
code = code.replaceAll('<NEURAL_HIDDEN_LAYERS>', 'c($hiddenNeurons)');
code = code.replaceAll('<NEURAL_MAXIT>', nnetMaxit.toString());
code = code.replaceAll('<NEURAL_MAX_NWTS>', nnetMaxNWts.toString());
code =
code.replaceAll('<NEURAL_ERROR_FCT>', '"${neuralErrorFct.toString()}"');
code = code.replaceAll(
'<NEURAL_ACT_FCT>',
'"${neuralActivationFct.toString()}"',
);
if (neuralActivationFct != 'relu') {
code = code.replaceAll(
'<NEURAL_ACT_FCT>',
'"${neuralActivationFct.toString()}"',
);
} else if (neuralActivationFct == 'relu') {
// relu corresponds to the ReLU function from the sigmoid package in R.
code = code.replaceAll('<NEURAL_ACT_FCT>', 'relu');
}
code = code.replaceAll('<NEURAL_THRESHOLD>', neuralThreshold.toString());
code = code.replaceAll('<NEURAL_STEP_MAX>', neuralStepMax.toString());
code = code.replaceAll(
'<NEURAL_IGNORE_CATEGORIC>',
neuralIgnoreCategoric.toString().toUpperCase(),
);
////////////////////////////////////////////////////////////////////////
// SVM
code = code.replaceAll('<SVM_KERNEL>', '"${svmKernel.toString()}"');
code = code.replaceAll('<SVM_DEGREE>', svmDegree.toString());
////////////////////////////////////////////////////////////////////////
// WORD CLOUD
code = code.replaceAll('<RANDOMORDER>', checkbox.toString().toUpperCase());
code = code.replaceAll('<STEM>', stem ? 'TRUE' : 'FALSE');
code = code.replaceAll('<PUNCTUATION>', punctuation ? 'TRUE' : 'FALSE');
code = code.replaceAll('<STOPWORD>', stopword ? 'TRUE' : 'FALSE');
code = code.replaceAll('<LANGUAGE>', language);
code = code.replaceAll('<MINFREQ>', minFreq);
code = code.replaceAll('<MAXWORD>', maxWord);
////////////////////////////////////////////////////////////////////////
if (includingMissing) {
code = code.replaceAll('usesurrogate=0,', '');
code = code.replaceAll('maxsurrogate=0', '');
}
code = code.replaceAll('<NNET_TRACE>', nnetTrace ? 'TRUE' : 'FALSE');
code = code.replaceAll('<NNET_SKIP>', nnetSkip ? 'TRUE' : 'FALSE');
////////////////////////////////////////////////////////////////////////
// read the boolean value from the provider.
bool includeCrossTab = ref.watch(crossTabSummaryProvider);
// Cross tabulation summary.
code = code.replaceAll(
'<SUMMARY_CROSS_TAB>',
includeCrossTab ? 'TRUE' : 'FALSE',
);
////////////////////////////////////////////////////////////////////////
// Add the code to the script provider so it will be displayed in the script
// tab and available to be exported there.
updateScript(ref, code);
// Run the code without comments.
code = rStripComments(code);
// Add a completion marker.
// code = '$code\nprint("Processing $script Completed")\n';
ref.read(ptyProvider).write(const Utf8Encoder().convert(code));
// Optionally, show a SnackBar when the script finishes executing.
// if (code.contains('Processing $script Completed')) {
setStatus(
ref,
'R scripts completed. See **Console** for details, **Script** for R code.\n'
'**$scripts**',
);
// if (context.mounted) {
// ScaffoldMessenger.of(context).showSnackBar(
// SnackBar(
// content: Row(
// children: [
// const Icon(Icons.thumb_up, color: Colors.blue),
// const SizedBox(width: 40),
// Expanded(
// child: Text(
// 'Execution of $script.R is completed.',
// style: const TextStyle(color: Colors.blue),
// ),
// ),
// ],
// ),
// backgroundColor: const Color(0xFFBBDEFB),
// elevation: 5,
// behavior: SnackBarBehavior.floating,
// shape: const StadiumBorder(),
// width: 600,
// // margin: const EdgeInsets.fromLTRB(10, 0, 300, 0),
// // Set a short duration
// duration: const Duration(seconds: 1),
// action: SnackBarAction(
// label: 'Okay',
// disabledTextColor: Colors.white,
// textColor: Colors.blue,
// onPressed: () {},
// ),
// ),
// );
// }
// }
}